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Abstract

The hippocampal formation takes a leading part in spatial
navigation and episodic memory. Many decades of research
revealed prominent neurons with salient responses, in partic-
ular place and grid cells. Yet, the individual computational
contribution of these neurons within the context of spatial
navigation and episodic memory remains debated.

The Transition Scale-Space (TSS) model is a computa-
tional and algorithmic model for the representation of se-
quences and the flow of information within the Hippocampus.
It addresses spatial navigation and episodic memories within
one conceptual and mathematical framework for sequence
processing, and accounts for place as well as grid cells. The
first contribute to a memory of spatial locations and tempo-
ral events. The latter represent spatial transitions and, thus,
information about the relationship between locations, which
they relay downstream to place cells. In contrast to other
models, hexagonal grid fields and multiple scales of grid
modules follow from rigorous mathematical deduction as
intrinsic properties of grid cells. Moreover, grid cells of the
TSS model operate jointly on afferents from sensory modali-
ties and place cells. In further contrast to other models, each
neuron type in the TSS model has a distinct and special-
ized purpose. The model provides explanations for several
other observations that are still unresolved and debated,
for instance the wall-angle offset and shearing behaviour
of grid fields in square environments or the reason for pre-
dominantly inhibitory connectivity within entorhinal cortex.
It also yields many testable predictions, such as the fine-
structure of connectivity between place and grid cells, and
reveals a connection between multiple scales of grid cells
and Theta phase precession, a certain temporal dynamic
during Theta oscillations. The model generalizes to other
transition systems beyond spatial navigation and might also
explain the striking similarity between medial and lateral
entorhinal cortex.

This paper provides a review of and introduction to the
Transition Scale-Space model for grid cells and highlights
several testable predictions. It briefly covers other existing
models, and identifies similarities and differences. Finally,
future research directions that derive from the model are

presented.

1 Introduction

Spatial navigation is unquestionably an important opera-
tion for any mobile creature. It takes a prominent role in
behaviour and is an intricate computational problem, yet
animals still easily outperform artificial systems in dynamic

environments. It is therefore not surprising that neuroscien-

tists, computer scientists, and roboticists are equally eager
to unravel its inner workings [9, 63].

The enormous interest in navigation has already led to
many scientific results. Seminal behavioural work by Tol-
man brought him to proclaim “the doctrine of a building
up of maps” in both rodents and humans [96]. Research
during the subsequent decades found neural evidence in
the Hippocampus and adjacent regions that is in support
of this idea [65], primarily in form of place [69, 70], head
direction [77, 93], and grid cells [38, 91]. Place cells express
receptive fields that are spatially localized to predominantly
one or only few locations, head direction cells fire when an
animal is facing a certain direction, while grid cells show
a triangular (or hexagonal) lattice of receptive fields and
are organized in modules with a discrete scale-increment.
More recent data suggests that place cells also form some
multi-scale representation [39, 29], and that the population
response of grid cells lives on a toroidal manifold [33].

Despite accumulating data and knowledge regarding a
map or map-like representations, many lingering questions
remain. This is particularly the case regarding the compu-
tations that are performed in the Entorhinal-Hippocampal
loop. For instance, it is still debated which function grid
cells contribute relative to place cells, why individual grid
cell responses are hexonally distributed or why the responses
align with a certain small angle relative to the walls of an
environment, why grid cell modules show a discretized scale-
increment, or which role temporal dynamics such as Theta
oscillations and Theta phase precession [44] play during
computations.

The Transition Scale-Space (T'SS) model for grid cells ad-
dresses some of these questions [98, 100]. It was developed
with methods from theoretical computer science, graph the-
ory, and information theory, amongst others, and by taking
the perspective of Marr’s 2nd level of analysis [567] (“algo-
rithms & data structures”). Thereby, the model is deliber-
ately abstract and the results concerning algorithms and data
structures are, in principle, independent from spatial navi-
gation. This also allowed to rigorously and mathematically
prove the theoretical results independently of characteristics
of the implementation level, in particular non-linear neural
and temporal dynamics. As a consequence, the results trans-
fer to other domains that are concerned with storing and
retrieving sequential, spatio-temporal, episodic, or relational
information. Yet, this approach left the model opaque to
those neuroscientists who have only limited experience in
the used techniques.

The goal of this article is to present an overview and in-
troduction to TSS that is both, intuitive and accessible, for
readers with no or limited background in mathematical meth-
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Figure 1: Ambiguous localization. Due to multiple responses of
grid cells on one scale, a single scale is not sufficient for localization.
Summarizing over the responses from multiple scales of grid cells
can improve the situation and partially solve this problem.

ods and computer science. To that end, most mathematical
details and rigor will be put aside in favour of colloquial ex-
planations. Some details, design justifications, and remarks
that go beyond the main goal of the paper are presented in
footnotes for interested readers. Several testable predictions
will be stated, as well as important future research directions
identified for spatial and episodic memory research. Note,
however, that this article can not provide an exhaustive sur-
vey of existing models for grid and place cells. Still, relevant
related work will be mentioned, and some models that are
most closely related to TSS briefly discussed to highlight
major differences.

2 Related Work

This section reviews existing models that are related to or
were influential for the TSS model. Similarities and dif-
ferences between the TSS model and particularly cognate
models will be discussed in detail. The discussion will antic-
ipate some of the properties and results of the TSS model,
but explain them in depth only in the next section.

A wide variety of models were developed for grid cells.
Oscillatory Interference (OI) models are single cell models in
which the grid pattern forms due to coincidence detection of
velocity controlled oscillators [14, 40], which is supported by
some experimental evidence [103]. Another type are Contin-
uous Attractor Network (CAN) models [32, 60, 13], in which
the hexagonal pattern appears due to one or multiple bumps
of activity that arise from local recurrent interactions within a
population of neurons. Evidence for low-dimensional attrac-
tor dynamics [108], strong recurrent inhibition [16], as well
as the toroidal topology of grid cell population activity [33]
are in support of CAN models. Both, OI and CAN models,
can accurately path integrate velocity signals, a computation
that is widely believed to be at the core of hippocampal
processing [80]. Yet, realistic implementations using spiking
neural networks of the latter suffer from severe stochastic
drift and require stabilization [66]. In other models, grid
cells emerge due to afferent connectivity from place cells, for
instance due to adaptation dynamics or during the compu-
tation of principal components of place cell activity [47, 25],
or based on principles from self-organizing maps [61, 49].
Most grid cell models that fit into one of these categories
were covered previously in excellent reviews [109, 35, 15].

In many of these models, grid cells are hypothesized to
perform path integration or localization. However, a single
scale of grid cells is insufficient for localization because the

repeating fields lead to ambiguity, illustrated in Figure 1. A
straightforward solution is to summarize over multiple differ-
ently scaled grid modules, which can significantly increase
the distance between ambiguous representations. Several
theoretical works investigated the ideal scaling factor for
this approach [58, 90, 102], meaning the scale-increment
between consecutive grid modules. While being based on
different prior assumptions, for instance local dynamics or
integration techniques, all these studies led to theoretically
optimal scale-increments in the range of 1.3 — 1.7, which is
comparable to biological observations [91]. Others studied
how multiple scales of grid cells could emerge in a computa-
tional model in which different scales of grid modules were
a consequence of a self-organizing process on inputs from
multiple scales of other cells [76].

The computational purpose of place cells is less disputed
than the purpose of grid cells. Specifically, place cells unde-
niably participate in episodic memory, spatial processing,
and memory consolidation [84, 46]. Using persistent homol-
ogy on real and artificial data, it was suggested that they
provide topological information about an environment [21,
22]. Moreover, they show interesting temporal dynamics in
form of pre- and replay, during which previously encountered
sequences of place cells fire in order they were traversed in
space [83], or in order of future goal-directed trajectories [26,
75], respectively. Experimental evidence suggests that replay
in place and grid cells is coordinated [71], hinting towards a
co-dependent computation in multiple hippocampal areas.
This also emphasizes the nature of the flow of information
within the Hippocampus.

The flow of information along the pathways in the Hip-
pocampus forms a loop, also called the trisynaptic circuit [5].
The recently proposed SCAN model focused particularly
on the forward projections from place to grid cells in this
loop [64]. It is based on a prior CAN model for grid cells [2],
but it deviates from the prior work and most other CAN
models for grid cells in that it does not rely on integration
of velocity signals. Rather, the authors suggest that Hebbian
plasticity between spatially modulated non-grid fields and
place cells form strong correlates. This means that different
sensory inputs lead to activity of different place cells. In
turn, plastic connections between place and grid cells then
move the activity bump of the grid cell population. Thus,
grid cells in the SCAN model effectively track the change
of place cell activity, or in other words transitions between
place cells. There are significant differences between the
SCAN and the TSS model, despite the similarity in what
grid cells learn and the fact that also the TSS model does
not rely on integration of velocity signals. For instance, grid
cells in the SCAN model receive afferents only from place
cells, while grid cells in the T'SS model jointly operate on
both, spatially modulated afferents and place cell activity,
to learn and represent how place cells are spatially related
relative to sensory inputs. In addition, hexagonal responses
of grid cells in the SCAN model are a consequence of at-
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tractor dynamics, and multiple scales are assumed to be the
result of place cell activity in multiple scales. In contrast,
hexagonal responses and multiple scales in the TSS model
are explained as inherent to grid cells due to optimal com-
putations, while attractor dynamics are a consequence of
implementing these computations in neural circuits.

There exist several further models that attempt to shed a
light on joint computations in the Entorhinal-Hippocampal
loop. Many of these models focus on navigation and use,
for instance landmarks and place codes to find navigational
strategies [78]. Others employed linear look-ahead [52] or
hierarchical linear-look ahead [30, 31] to find paths between
locations by predicting future locations, or showed how
grid cell dynamics can be used for navigation around ob-
stacles [27, 28]. Other prior work developed an extensive
hippocampal navigation model that was evaluated using
robotic systems [19, 20, 41]. This prior work is particularly
relevant, given that the authors suggested to study transitions
and transition encoding in neural populations to improve
navigational capabilities and retrieval. However, this model
partially predates the discovery of grid cells and, conse-
quently, no direct link was established between transition
coding, place cells, and grid cells. More recent work sur-
veyed the contribution of Hippocampus and in particular
time cells and temporal coding to sequencing and naviga-
tion, and identified time as an elemental dimension during
hippocampal processing [7].

Using a reinforcement learning perspective, others sug-
gested that the Hippocampus forms a predictive map [88]. In
an elegant theoretical study, the authors examined successor
representations, a dynamics model which represents states in
terms of their predictive relationship. They discovered that
the eigenvectors of the matrix which represents state-state
transitions are periodic and grid-field like. However, the work
considered the transition matrix only upon convergence and
cannot deal with changes to the transition matrix, which
will necesarily occur during exploration. Moreover, reliance
on a reinforcement signal poses a serious issue if the model
is tasked with spontaneously computing context-modulated
trajectories. For instance, it cannot compute trajectories to
remote locations that are in conflict with the reward struc-
ture of the environment without expensive retraining. The
work also does not provide a fundamental explanation for
the periodicity, or a constructive method for how grid fields
could emerge in a locally distributed, self-organizing, or
biologically plausible manner. In contrast, the TSS model
provides constructive methods for bottom-up learning. It is
also independent of rewards, but can be easily augmented
with reward structures or other arbitrary context-modulators.

The idea of a predictive map was recently taken further
in form of a cognitive computational model for the hip-
pocampal map, called the Tolman-Eichenbaum Machine
(TEM) [107, 106]. The goal of the TEM is to learn to pre-
dict the next sensory obervation using the current and all
previous observations. For spatial navigation, the authors

built their model around a probabilistic formulation for path
integration that is conditioned on the action that an agent
performs. They note that TEM generalizes to relational
information in abstract spaces by conditioning on relational
information. Furthermore, they endow their model with
hierarchical scales by providing data that was smoothed
with differently scaled exponential kernels. The authors
provide results that show that their model learns various
spatially modulated responses, for instance reminiscent of
border cells. They further note that spatial structures are
represented using grid-like representations. The TEM is
conceptually similar to the previously published T'SS model,
but the two models have significant differences. In TEM,
spatially modulated neurons such as border cells emerge,
while they are taken as external input in the TSS model. For
the TEM, the authors relate hexagonal grid cell responses to
prior results from predictive coding [88] and in particular to
a deep learning model [86]. The prior results from the deep
learning model need to be treated with caution, however,
given that a recent study reported flaws in their interpreta-
tion [81]. In the TSS model, hexagonal responses are an
intrinsic property of grid cells due to a fundamental neural
computation and an optimality result that will be outlined
further below [98]. Multiple scales in TEM are extrinsic be-
cause the data that it receives is pre-processed into multiple-
scales, while in the TSS model, multiple scales are intrinsic
to grid cells for optimal acceleration of retrievals [100]. The
probabilistic setting of the TEM lends itself to an approxi-
mate interpretation in terms of neural firing rates. However,
Bayesian inference is not an inductive method for neural
dynamics and circuits, meaning it does not directly lead to
a biologically plausible blueprint of how spiking neurons
could mechanistically perform inference computations [85].
In contrast, the T'SS model currently lacks a probabilistic
description, but was derived from first principles and with
special focus regarding algorithms & data structures. This
allowed to define mathematical error functions of individual
as well as populations of grid cells in the T'SS model, and
implement them using biologically plausible neural dynam-
ics [99, 101] (see also Figure 7 below). Another consequence
of the (abstract) derivation is that the TSS model generalizes
immediately to other domains in which relational informa-
tion or spatio-temporal sequences are processed, similar to
other data structures and algorithms in computer science. In
comparison, the TEM was shown to generalize to abstract
spaces in some experiments by using carefully designed pri-
ors. The broad generalization capabilities that are attested
to TEM will, therefore, require further scrutiny. Finally, time
takes a prominent role in the TSS model while it is only
secondary in the TEM. First, time is an essential part in
what and how the TSS model learns to represent, i.e. spatio-
temporal and episodic sequences in multiple scales. Second,
time played a crucial role during run-time analysis and per-
formance investigations, which motivated the development
of multi-scale representations in the first place and which
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will be explained in further detail below.

Finally, several models for navigation are based on deep
learning [18, 6, 86]. Because some populations of artificial
neurons in these models show four- to six-fold symmetric
responses, the models were proclaimed to provide insights
into real grid cells. However, a recent study investigated
these claims and observed that, in these models, the lattice
might be a result of tuning parameters and implementation
choices, and not of an alleged neural computation [81]. In
turn, this study was subsequently refuted by others [87], who
noted several issues within the study and pointed out that
grid formation of grid cells might follow from the theory
of pattern formation [86]. Although it is widely known that
many physical and theoretical systems can lead to a vari-
ety of observable patterns [97, 17], for instance hexagons,
stripes, or spirals, which are commonly referred to as Tur-
ing patterns, the patterns themselves rarely give insight into
their computational purpose. Interpretations stemming from
deep learning models should thus be taken with due care.

3 The Transition Scale-Space model

The TSS model is a computational model for the Entorhinal-
Hippocampal loop. Its goal is to provide mathematically
rigorous and biologically plausible explanations for neural re-
sponses within the Hippocampal formation, and in particular
for grid cells. It is based on the idea that spatial navigation
and episodic memories are two related, in fact congeneric,
processes and thus treats both within one conceptual and
algorithmic framework. Specifically, both processes are con-
cerned with sequences, which can be motivated from the
perspective of navigation.

Spatial navigation consists of at least two distinct but es-
sential parts [42]. One is acquiring sufficient knowledge for
localization, another is planning future trajectories relative
to and between locations. In fact, one without the other is
insufficient. Path integrating travelled distance is meaning-
less if that distance cannot be related to existing memory of
previously visited locations, for instance using some form of
chart or map. In turn, accumulating maps and knowledge
of locations is without value if there is no information about
their connectedness or a retrieval process that makes use of
it. Hence, any system that should be used for navigational
purposes needs to necessarily address both, illustrated in
the context of the T'SS model in Figure 2. Learning spatial
maps is tantamount to learning maps of temporal events
and the temporal order of successive events.

The TSS model consists of three primary neural memo-
ries. Each has the purpose of representing particular and
distinct information regarding spatio-temporal and episodic
sequences. The first memory consists of place cells, which
integrate sensory and contextual information for the purpose
of localization and storage of temporal events. The second
memory is made of temporal transition cells, which exhibit
place field characteristics and represent the temporal order
in which place cells activated one after another during ex-
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Figure 2: Navigation. (left) Random exploration strategy (middle)
Place cell recruitment in space. By themselves, place cells in the
TSS lack the knowledge of spatial or temporal relationships between
each other. They can be interpreted as individual pins that are put
onto a map, or like location entries in an address book. (right)
Information about spatial and temporal transitions between place
cells provide the connectivity structure that is required to navigate
from one place to another.
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Figure 3: Systems overview of the TSS model. The TSS model
consists of three primary neural memories, which are indicated by
solid, coloured lines. Grid cells perform dendritic computation on
spatially modulated afferents, whereas place cells are recruited on
the basis of spatially and contextually modulated inputs. Temporal
transitions are learned directly on top of place cells. Each memory
that stores transitions can, in principle, be context-modulated itself.
This is illustrated for temporal transitions with gray arrows that
point to and away from the memory. The focus of the TSS model
is on the flow of information between the three primary memories,
as well as internal and recurrent dynamics of each memory. Note
that spatially modulated afferents are assumed to be (egocentric)
representations which are suitable to identify individual locations,
for instance the space of boundary vector or border cells [8, 54,
10].

ploration or mental episodic sequences. The third memory
contains grid cells, which, in the TSS model, acquire informa-
tion about spatial transitions and relations between locations
and conveys this information downstream to place cells. A
general systems overview of the TSS model is illustrated in
Figure 3.

The different neuron types of the TSS model are due to
mathematically rigorous results concerning the optimality
of representations in the three memories. For instance, the
hexagonal arrangement of grid fields in two dimensional,
flat environments emerges as a result of optimally compress-
ing data [98], while a discrete scale increment between grid
modules follows from optimally accelerating retrievals [100].
Moreover, learning and retrieving sequences in an on-line
fashion induces temporal dynamics that are similar to phase
precession and pre- and replay of place cell sequences. The
following will describe the purpose of each memory as well
as their characteristics in more detail, and present intuitive
explanations for the mathematical results. Some predictions
for biologically plausible implementations or expected be-
haviour in real neurons will be stated immediately, while
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Figure 4: Place cell representations. (left) At any point in
time, an animal receives sensory information, for instance visual
information regarding a distal landmark or the smell of a flower,
and has internal states and objectives, for instance a hunger level.
(right) The information that is available at one point in time can
be represented by a vector ##. In the TSS model, place cells
are considered to integrate this information, thus representing such
vectors.

future research directions that are derived from the model
will be outlined in the next section.

3.1 Place cells integrate sensory and contextual infor-
mation

Consider an animal that explores a previously unknown en-
vironment. Regardless of the specific exploration strategy
that is used, such as random exploration or visually driven
navigation, it must accumulate sufficient information about
the environment that is useful for subsequent and possibly
context-modulated operations. For instance, it might need
to quickly compute approximate shortest-path trajectories
towards a shelter in case of the sudden appearance of a
predator, or to a food source if hunger increases. A primary
task for a neural navigation system is, thus, to acquire rep-

resentations of space and trajectories that are suitable for

retrieval under biologically plausible dynamics®.

A single place cell in the T'SS model integrates all afferent
information that is available at a certain time ¢. Illustrated
in Figure 4, the afferent information might consist of all
currently available sensory inputs, such as visual perception,
tactile information, or smell, in addition to contextual in-
formation regarding the animal’s internal state, for instance

IThe number of neurons in any brain region is finitely countable, and
each neuron is subject to stochastic non-linear temporal dynamics. This
renders it unlikely that an animal stores a continous representation of
space or traversed trajectories in memory. Take, for instance, a continuous
trajectory between two random points @ and 4 on some manifold RV, such
as the geodesic between the two points. The continuous trajectory can be
parametrized as a function f : [0,1] = RY with £(0) = a and f(1) = &.
It is, in principle, possible to implement this parametrization with spiking
neurons based on the relative spike time of two neurons, say #; and ny. One
variant could be to have n; encode f(0), and ny the relative offset from
f(0). Another could be to have n; encode f(0), and ny encode f (1), with
their relative spike time being weighted contribution of the endpoints of the
trajectory. In either case, this will require infinitely precise relative spike
times to accurately decode the true position on the trajectory. Imagine
that a and b are spatially very far away. Still, a receiving decoder neuron
d that receives spikes from n; and ng follows its own temporal dynamics.
That is, spike times of #7 and ny cannot be arbitrarily far apart in time, but
need to fit the dynamics of d. With growing distance between a and b, so is
the requirement for the decoding precision of spike times between n; and
ny. Assuming biologically plausible noise in the spike times of n; and ny
aggravates the situation even further. It thus appears more likely that an
animal stores samples of the environment in conjunction with internal states
from which an approximately continuous trajectory can be reconstructed.

its hunger level, reward information regarding the location,
or short-term objectives?. Thus, the purpose of place cells
in the TSS model is to dynamically sample and represent
an animal’s state space®. Finally, place cells are assumed
to reciprocally project back to higher cortical areas?, and
to be recruited using winner-take-all dynamics during the

exploration of an environment”.

3.2 On temporal transitions and the relational struc-
ture of episodic events

Instead of grouping representations for spatial and temporal
events (place cells) with information regarding the order in
which events occured, the T'SS model uses a second memory
that stores temporal transitions between events. Within
this memory, each neuron represents (bundles) multiple

this
($15- - »$n5€15- . . ,cm) wWhich consists of n sensory items s;,i =1,...,%, and

2Mathematically, can be denoted by a vector u =
m contextual items ¢, j=1,....,m. Overall, there might be y=1,...,Np
different vectors u*, where Np depends on the maximal number of patterns
that the neural network can handle, or in other words its storage capacity.
In the simplest case, a single neuron or place cell could be considered to
store one single ##, but more elaborate methods exist that maximize the
storage capacity relative to the number of neurons, for instance Hopfield
networks or Willshaw-type neural associative memories [74]. The specific
format of each of the s5; or ¢; are not of concern. Any component of a
vector can be approximately represented by a binary string, similar to how
data is represented in computers, and with a certain relation to spiking
representations. However, binarization might induce quantization issues
that need to be addressed. In any case, it suffices to realize that the place
cell input is high dimensional, i.e. # € S¥ where M is the dimension of the
input manifold, and if place cells perform mapping or localization, that the
network dynamics yield a low-dimensional output v € SV that lives on a
N dimensional data manifold, with M > N, where for two dimensional
localization N = 2.

3Note that, in general, the information that is represented by a place
cell in the TSS model can be interpret as both, an individual event in a
temporal sequence and as a location in a spatial environment. In the original
description for the TSS model [98], the entities storing the vectors u* were
not called place cells, but symbols. The terminology comes from the fact that
sequences of such vectors can be interpreted as so-called formal languages.
In this case, the set of all vectors can be considered to be an alphabet
for a language, each vector being one symbol. A formal language can
then be treated, for instance, with tools from theoretical computer science
and graph theory. Other reasons for the change in terminology were to
avoid involuntary connotations stemming from the term place cells, and to
demonstrate that the mathematical and algorithmic results are independent
of spatial navigation.

4The reciprocal connection of place cells to higher cortical areas is based
on ideas from the memory indexing theory for Hippocampus [94, 95].

*While it is not a primary focus of the TSS model, it is worthwile to
briefly reason through one approach for the recruitement process of place
cells. In a previously unexplored environment, none of the place cells
is associated with any of the afferent information that arrives. During
exploration, the process randomly picks one of the place cells, p, and
associates it with the afferents at the current time step. If the animal moves
away from this specific position, afferent inputs will eventually not match
the data represented by p anymore. Then, the process randomly selects
another place cell, ¢, and associates it with the new data. This depends
on some similarity measure that can compare the information represented
by p and ¢, which, in terms of neural activity, could correspond to firing
rate changes or relative temporal spike onsets. The process is a simple
winner-take-all dynamics and continues until the entire space is explored, or
until the number of place cells that are not yet associated is exhausted. This
is a standard procedure for instance in self-organizing maps and growing

neural gas, and widely used in com2%utational neuroscience [56].
© 2023 Nicolai Waniek - git-rev: cc16e69

5



Kidnapped Rodent Experiment Context-modulated Transitions

o

C’k ............................................ 5 e

Figure 5: Reactivation of place cells and contextual modula-
tion of transitions. (Left) Kidnapped Rodent Experiment. When
transporting a blindfolded animal to a known location, the best
matching place cell relative to the new sensory input activates in
the TSS model, indicated by green. The animal thus can localize
itself given the prior knowledge of this location. (Right) Context
modulation of transitions allows to re-use place cells in different
(behavioural) contexts, indicated by different colours for the transi-
tions.

temporal transitions. This provides several benefits which
will be discussed below. In particular, it allows to study the
limit of the memory’s capacity and solves the problem that
contextual information by itself is insufficient for navigational
purposes or episodic memory.

Imagine taking the animal from above and, having it
blindfolded during transportation, placing it at a distal but
already known location as illustrated in Figure 5°. Recruit-
ing place cells that represent contextual information during
exploration is sufficient for (approximate) localization. That
means that once the animal has again access to sensory
data, the place cell with the closest match to that sensory
data will activate predominantly’ and, assuming that the
purpose of place cells is localization, the animal will know
where it is. Yet, this is insufficient to retrospectively activate
the elements in the temporal order in which the animal tra-
versed the environment during exploration, which might be
important for some tasks. To solve this issue, additional
information regarding temporal relations, or more precisely
temporal transitions, between place cells needs to be stored.

The temporal transition memory of the TSS model has
several technical, analytical, and behavioural benefits. The
naive approach to represent transitional information is to
recurrently connect the place cells in order in which they
were recruited or activated during exploration, or by in-
creasing the synaptic strength between successive place cells.
However, this suffers from runaway activity and a separate
transition memory improves the controllability of sequential
retrievals [104, 105]8. Two further benefits of a separate tem-

6Roboticists call this the “kidnapped robot experiment”.

This behaviour is a certain form of similarity search that is well studied
in both, computational models for associative memories and real systems
such as the Hippocampus [82, 89, 67, 79]. Essentially, the search is a pattern
completion process for a partial or disrupted input pattern #* which is
similar enough but not equal to the original pattern «*. Another variant
to achieve this behaviour is a simple winner-take-all dynamics based on
nearest neighbour search.

8Technically, the population of place cells of the TSS model can be
implemented as an attractor network with multiple attractors, where each
location corresponds to one attractor that depends on the input to the net-
work. By adding recurrent connectivity that stores transitional information,
the population of place cells exhibits, in addition to its main functional
purpose, a structure similar to synfire chains. Prior studies showed that
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Figure 6: Spurious transitions and transition graphs. (Left)
Errors during compression (or bundling) could produce spurious
transitions, indicated by red. They could lead to invalid sequences,
and should be avoided. (Middle) The TSS model with place cells
and temporal transitions forms a bipartite transition graph. Bipar-
tite graphs in general have two different types of vertices (nodes),
indicated by colour and shape. (Right) The TSS model with place
cells, temporal, and spatial transitions forms a tripartite transition
graph, consisting of three different types of vertices.

poral transition memory are that transitions themselves can
be context-modulated during behavioural tasks, illustrated
in Figure 5, and that properties of transition memories can
be studied in detail.

In fact, one question arises immediately: How many neu-
rons are needed to store temporal transitions in the separate
memory? The question follows from the observation that a
single transition is only 1 bit of information’, and using one
neuron to store this bit appears to be wasteful'’. Therefore,
the goal is to compress (or bundle) 7" transitions into Nz
neurons in such a way that N7 < I'. An important con-
straint for such a compression is that spurious transitions are
avoided. That means that if the animal did not experience a
temporal transition from place cell p to place cell ¢, the com-
pression should not lead to the situation in which a retrieval
process generates sequences with a transition between p and
¢ and, thus, potentially invalid sequences (Figure 6).

It turns out that compressing (or bundling) temporal tran-
sitions is very limited in the general case [98]. In fact, only
those transitions that are “outbound” from one place cell
to other place cells can be compressed within one tempo-
ral transition neuron. It is not possible to store additional
temporal transitions from otker place cells using that same
temporal transition neuron without being at risk of spurious
transitions and, thus, violating the constraint that was stated
above.

Several observations follow from the theoretical results.
The number of temporal transition neurons is at least in the
range of the number of place cells. Moreover, temporal tran-

controlling the speed or retrieval of sequences in synfire chains and asso-
ciative memories is non-trivial [104, 105]. In particular, background noise
or afferent inputs can induce an autonomous mode in attractor networks
where one attractor is selected randomly or in which the system even starts
to unvoluntarily move through the entire state space. The separate memory
of the TSS that stores temporal transitions provides improved control over
such behaviour.

%5 there a transition from place cell p to place cell ¢?” can be answered
with a yes/no response. From the perspective of information theory, this is
effectively 1 bit of information.

10The capacity of Hopfield networks and Willshaw-type neural associative
memories has been studied extensively [72, 73, 4]. Given sparse input
patterns, the asymptotical capacity that can be achieved is on the order of
0.72 bit per synapse. Recent work on Modern Hopfield networks attempts to

push this limit even further [48].
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sition neurons will exhibit place fields. That is, a transition
neuron will activate in conjunction with its corresponding
place cell for which it stores transitions. From a graph the-
ory point of view, the system forms a directed bi-partite
graph, with one type of vertices (nodes) in this graph being
place cells, and the other type representing the temporal
transitions to other place cells'!, illustrated in Figure 6.

3.3 Spatial transitions and the hexagonal distribution
of squishy fields

The TSS model uses a third memory to store spatial tran-
sitions. The reason is that temporal and spatial transitions
differ significantly in their structure. Temporal transitions,
which were considered in the previous section, underlies
the assumption that arbitrary transitions between any place
cells p and ¢ are feasible. This is relevant, for instance, for
systems that are tasked predominantly with episodic infor-
mation. The physical space in which an animal navigates is,
however, quite different. Primarily, immediate transitions be-
tween arbitrary remote locations are physically not feasible
without crossing through other locations. This has substan-
tial consequences for spatial transitions and, in particular,
how to optimally bundle them!?. Effectively, the difference
between temporal and spatial transitions gives rise to spatial
transition neurons: grid cells.

Grid cells in the TSS model are subject to the same con-
siderations as temporal transition neurons. Specifically, each
grid cell is supposed to bundle as many spatial transitions as
possible to maximize the memory capacity and to minimize
the number of neurons required in the third memory. Similar
to temporal transition neurons, a grid cell can only represent
disjoint transitions to avoid spurious transitions, meaning
it can not represent any transition that starts in a region
of one of the other transitions that this grid cell represents.
To understand the implications of this for bundling spatial
transitions, it is first necessary to characterise the properties
of spatial transitions.

UThe bipartite graph has a natural connection to factor graphs and
probabilistic models, with the main difference being the directedness of the
graph. It thus appears straightforward to augment the graph with notions
of probabilities and uncertainty and run, for instance, the sum-product
algorithm to evaluate local marginal distributions.

In the lingo of theoretical computer science and formal language theory,
place cells can be interpreted as letters or symbols of an alphabet. More
precisely, p; € X, where X denotes the alphabet and p; the i-th place cell or
letter. A word over the alphabet is then any finite sequence of letters from
the alphabet, for instance p7p3p1. Z* denotes the set of all words over the
alphabet, where * is the Kleene star operator. Then, a formal language L
over the alphabet X is a subset of X*. In the case of temporal transitions,
the assumption is that the language that is formed by interpreting place
cells as letters is L, = X", meaning that any two place cells p; and p;
might be temporally adjacent. This is in contrast to the language that is
induced by spatial transitions. In this case, the language is endowed with an
additional spatial distance metric 9, and the “spatial language” L; consists
only of words in which p; and p; are spatial neighbours, meaning within a
certain distance D (p;,p;) < 6. If p; and p; are not spatial neighbours, i.e.
D (pi,pr) > 0, they cannot be adjacent letters in words within the “spatial
language” Ly.

Spatial transitions are captured by on-center and off-

surround dynamics in the TSS model [98]'3. Intuitively,

a spatial transition begins at a certain perceivable location,
called its domain, and can lead to any location in the neigh-
bourhood surrounding this location, called its image (see
Figure 7). Furthermore, a spatial transition is not defined
for locations beyond the surround neighborhood, given that
such transitions are not physically feasible!*. A single spatial
transition is thus only defined for a small portion of the
space, identified for instance by sensory modalities, and not
the global space in which an animal navigates'®.

Each grid cell of the TSS model maximizes the number of
spatial transitions that it can represent. Due to the structure
of spatial transitions, this means that each grid cell attempts
to densely pack as many on-center and off-surround receptive
fields on afferent sensory information'®. In the TSS model,
the packing of fields is considered to be part of the dendritic
computation of each grid cell (see illustration in Figure 7).
The densest packing of such fields in an open environment,
and thus the optimal bundling of spatial transitions, results
in a hexagonal lattice [98]. In the theoretical limit in which
any grid cell can represent an arbitrary number of spatial
transitions, only three grid cells are required in total. While
this is biologically implausible, the key insight is that there

130n-center and off-surround dynamics for spatial transitions are, in fact,
a result of optimal bundling [98]. This means that these dynamics are
not preordained, but a consequence of the computations that grid cells in
the T'SS model perform. Details about this construction are omitted from
this paper for the sake of clarity and to avoid the introduction of further
technical jargon and complexity.

14Note that the TSS model explicitly assumes that individual locations
can be inferred from spatially modulated sensory afferents. This means
that the definition of a spatial transition requires that locations can be
identified and disambiguated from neighbouring locations, and that this is
the functional part of the on-center fields of grid cells in the model. A prior
theoretical model for place cells demonstrated that information regarding
an animal’s distance towards boundaries is sufficient for the generation
of place cell responses [8], and subsequent studies found evidence for the
existence of such data in the Hippocampus [54, 10]. It is therefore safe to
assume that there exists afferent sensory information which is sufficiently
rich to allow this kind of discrimination, and that each perceivable and
distinguishable location is characterized by a certain spatially modulated
signature. Note that, hereby, locations with the same or almost identical
sensory stimuli are expected to activate the same grid cell, as seen in the
fragmentation of grid maps in hair-pin mazes [23], and that distortions that
originate in sensory afferents are expected to translate to distortions in grid
fields, similar to grid field deformations due to environmental geometry [51,
50].

15The definition of spatial transitions in the TSS model is similar to
the definition of a chart of an atlas in differential geometry. In fact, the
TSS model can compute shortest path trajectories precisely because of this
relation on arbitrary Riemannian manifolds [100]. Moreover, the transitions
of the TSS have a certain conspicuous relationship to mathematical (total)
differential operators, meaning that they represent the change along all
directions. However, further work will be required to identify the properties
of such an operator and to establish a full mathematical picture.

16The mathematical proof in the original work derived the optimality
result using the Petersen-Middleton theorem for sampling from a higher
dimensional band-limited signal, and a subsequent reduction to a graph
colouring problem [98]. Sphere packing provides, however, a more intu-
itive understanding of the proposed computation that is performed in the
dendritic tree of a grid cell. There is a direct correspondence between the

proof, in particular the sampling theorem, and sphere packing.
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Figure 7: Spatial Transition, Dendritic Computation, Squishy
Field Dynamics, Biologically Plausible Simulations. (top left)
A spatial transition is defined in the TSS model for a certain loca-
tion that is identifiable in sensory space, and leads to the entire
neighbourhood of similar sensory representations. (top middle) A
grid cell performs identification of spatial transitions in form of
on-center and off-surround receptive fields and dense packing of
the receptive fields as part of its dendritic computation. It conveys
the information about a spatial transition downstream to place
cells. (top right) Dense packing of receptive fields that are sub-
ject to slight variability (squishy fields) in rectangular environments
consistently yields a wall-angle offset that is comparable to grid
field distributions of real rodents. (bottom) Simulations of neural
dendritic weights that follow biologically plausible plasticity dy-
namics during random exploration of a square environment. The
results show stable dendritic weights over the duration of the simu-
lation, and wall-angle offsets and slight shearing that are similar
to observations from real grid cells [92]. The first seven columns
show the evolution of the plastic dendritic weight maps at different
times of the simulation, with random initialization at ¢ = 0, the last
column depicts the auto-correlogram for each weight map. The
simulated animal randomly explored the environment during the
entire simulation following movement statistics that were based on
rodent data. This particular simulation had a final gridness score
of 0.949. Figure partially reproduced from [99].

is a comparably small, finite number of grid cells required
to cover large, behaviourally relevant spaces [98].

In biologically plausible and real networks, individual grid
fields are unlikely to be rigid, but show some variability. That
means that while a grid field generally is expected to follow
the on-center and off-surround dynamics that are described
above, the dynamics might vary slightly from field to field
or express other imperfections. Moreover, the dynamics de-
pend on the sensory afferents on which the center-surround
fields are packed on, which might bring further imperfec-
tions. Overall, this potentially leads to a squishiness of grid
fields. The behaviour of such squishy fields can be simulated
to study expected distributions of real grid fields in different
environments [98]. In fact, it turns out that simulating the
dense packing of squishy fields consistently leads to wall-
angle offsets in the range of observations from real grid
cells [92]. This wall-angle offset is commonly assumed to be
a requirement for computations that rely on symmetry break-
ing during (or in addition to) an anchoring or localization
process. In contrast, the T'SS model suggests that they are

simply the by-product of optimal dendritic computations!”
that densely pack receptive fields'® , and derive from the
geometric structure of the environments that rodents are
exposed to during trials. The wall angle offset also appears
in simulations of neurons and their dendritic weights with
biologically plausible dynamics (see bottom row of Figure 7).

In the T'SS model, a population of grid cells needs to be
maximally competitive [98]. The reason is similar to the
argument regarding spurious transitions, but also follows
from the minimization of required grid cells. Two grid cells
that represent spatial transitions which start from the same
location are immediately in violation of the constraint to
reduce the number of grid cells. At the same time, if the cells
encode transitions starting from similar but distinguishable
locations, co-activation could lead to spurious transitions.
Therefore, the population dynamics need to exihibit winner-
take-all characteristics to avoid co-activation of multiple cells,
for instance with strong recurrent inhibition between grid

cells'®. However, a biologically plausible implementation is

17The proposed biological nature of the dendritic computations can be
understood as follows. Assume a certain number of presynaptic spatially
modulated neurons [8, 54, 10]. Inspired by relative spike latencies of retinal
neurons [36], further assume that the spike time of each of these neurons is
relative to the stimulus onset and its preferred stimulus. This means that a
neuron is expected to spike almost immediately given its preferred stimulus,
and systematically later depending on the match between the actual and
preferred stimulus. At a certain time ¢, a grid cell will then need to synapse
(or correlate) with the “early” presynaptic inputs to establish the start of the
transition. In addition, this grid cell has to decorrelate from “late” spikes,
because they carry information about similar but neighbouring locations
and, thus, the target region of the transition. The correlation/decorrelation
process can be well described as local dynamics using asymmetric spike-
timing dependent plasticity kernels. Given suitable presynaptic input, this
leads to dense packing of circular fields. That means that the distribution
of grid fields should derive from presynaptic activity. In other words, grid
fields in open rectangular spaces are likely hexagonal because sensory
stimuli are similar to each other, and the distribution of grid fields should
change in accordance with changes in presynaptic inputs in more complex
enviroments [51, 50]. More details, discussion, and simulation results can
be found in the prior work [101, 98, 99].

18Simulating dense packing of squishy fields reveals that the hexagonal
packing in two dimensions is a minimum-energy configuration that can be
easily attained. In higher dimensions, the minimum-energy configuration
should again follow results from sphere packing theorems. However, there
are several other low-energy configurations which appear to be local minima
and which are more easily discovered by the system dynamics. These low-
energy configurations do not show a “nice” hexagonal distribution of the
fields. Rather, the fields are irregular and look “all over the place”. This
might explain the distribution of grid fields in animals that traverse three
dimensions [37, 34], and have implications for future research.

9Evidence from rodents suggests that recurrent connectivity within Me-
dial Entorhinal Cortex (MEC) is predominantly inhibitory [16]. However,
Parvabulmin-expressing interneurons (PV neurons), which are known to
provide strong and rapid recurrent inhibition, lack a clear spatial tuning
similar to grid or place cells [12]. This poses a problem for CAN models
of grid cells which rely on specifically tuned inhibition that depends on
the phase of a grid cell. In contrast, the TSS model requires only that
winner-take-all dynamics are fast, but the inhibition can be diffusive. That
means that after one grid cell spikes, all grid cells should be silenced. An
implementation of a small network of TSS grid cells, in which the model
neurons follow biologically plausible dynamics but directly and instanta-
neously inhibit each other, shows clear hexagonal pattern formation [99],
illustrated in Figure 7. A more elaborate implementation which explicitly
models PV interneurons is expected to show similar behaviour. In such a
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likely to lead to overlapping receptive fields of grid cells. The
reasons are that afferent information might carry uncertainty
that is expressed in a variability of spike times, and that the
recurrent inhibition of winner-take-all dynamics, although
possibly very fast, is not instantaneous.

To summarize, the function that grid cells provide is knowl-
edge about the spatial relationship between locations. While
the identification of transitions occurs on spatially modu-
lated afferents as part of the dendritic computation of grid
cells, the information is subsequently conveyed downstream
to place cells (see also Figure 8)%°. The disentanglement
of event representation and localization (place cells), tem-
poral transitions, spatial relations (grid cells), and sensory
modalities is helpful for planning spatio-temporal trajecto-
ries during retrieval operations, in particular shortest or
context-modulated paths [98]. Together with place cells and
temporal transitions, grid cells form a tripartite graph as
illustrated in Figure 6 and, importantly, a spatio-temporal
topological map.

3.4 Multiple spatial scales to achieve biologically rele-

vant retrieval times

The system of memories described in the previous sections
is sufficient for reproducing sequences and shortest paths.
For instance, to retrieve a sequence from p (current location)
to r (target location), it is sufficient to search the tri-partite
connected graph to find a shortest connected path from p to

r. However, it is vital that this computation has a suitable

run-time, for instance in the case of a perilious situation®!.

The TSS model uses multiple scales of grid cells to optimally
accelerate such retrievals. Each successive scale learns to
represent spatial transitions of systematically increasing areas,
and submits this information downstream to multiple place
cells.

model, a single PV interneuron would respond to several grid cells, and
diffusively all grid cells that it reciprocally connects to in support of spatial
transition learning and location disambiguation. This might explain why
the responses of single PV interneurons are reminiscent of the cumulative
spatial tuning of multiple grid cells [12], and why silencing PV interneurons
antagonizes the hexagonal grid response [62].

20To convey this information downstream, activity from place cells needs
to temporally coincide with the detection of a spatial transition during
dendritic computations of grid cells of the T'SS model. In other words,
detection of a spatial transition is only meaningful in conjunction with the
information regarding the sequential event structure that they receive from
place cells. Still, a population of grid cells needs to be maximally competitive
to avoid spurious transitions, which can be implemented with recurrent
inhibitory dynamics locally within the population. This observation might
explain why real grid cells need drive from Hippocampus to maintain
their hexagonal response, but the network maintains coherence even under
inactivation of hippocampal afferents [3, 11].

21 Any neural computation must be fast enough to reach behaviourally
relevant performance. This is especially true for the navigation system of a
mobile animal. Consider an animal in a perilious situation, such as being
chased by a predator, and that the animal cannot rely on visual homing
towards a shelter due to obstacles or occlusions. It therefore must compute
a solution strategy based exclusively on searching through its memorized
locations and how to get from one location to another, until it finds a
desired location.

Po P1 Po P1 P2 Ps Coincidence Detection Problem
Po P1 P2 Ps P4+ P5 Ps P7
Place
AN Cells

i

i i ! L
] I A 5
(scaling: 2 (V2)
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Figure 8: Simplified illustration of multiple scales of grid
cells and the Binding Problem. (left) A discrete one-dimensional
grid cell that learns transitions to its right. The on-center and
off-surround area, indicated by the black/white box, is learned on
sensory afferents (blue arrows), and the transitional knowledge
links place cells, here py and p1, which are also recruited from
sensory afferents. (middle) Two simplified scales of grid cells,
where a grid cell on the smallest scale links place cells pg and pq,
while a grid cell on the next scale links (pg,p1) with (pg,p3). The
optimal scale increment (pink arrow) in the discrete case is 2, and
for biologically plausible tuning curves it is V2. (right) Learning
grid cells on larger scales leads to a coincidence detection or binding
problem. Sensory afferents (blue arrows) are unlikely to activate
place cells that are far away from the current location, e.g. py or
p7. Yet, a large grid cell might need to link these place cells.

Generally, finding out if a path between two locations
exists means to follow all possible trajectories (sequences)
outbound from the starting place cell until the target place
cell is discovered. In the worst case, however, the search
space degenerates to a sequence p — -+ — ¢; = - =T,
where the start location p and the target location r are
maximally separated by intermediate locations ¢;??, and
arrows indicate transitions. In this case, the retrieval time
is linear in the number of elements on the sequence, which
can be prohibitively slow especially under consideration of
realistic neural dynamics??.

Retrieval times can be accelerated optimally using a search
strategy that uses multiple scales of grid modules with a

discrete scale increment between successive scales [100]%%.

2In the worst case and without having additional data structures and
mechanisms at hand, parallel evaluation of trajectories that are outbound
from p is not a solution. The reason is that the sequence of places from

cannot be reduced any further. In fact, in this case the smallest grid scale

— r forms what is called the critical path of the computation which

and temporal transitions coincide and provide identical information [100].

23To further understand the problem of retrieval times, consider the
thought experiment where p and r are 200 m apart, and each (intermediate)
place cell covers an area of 20 cm. Moreover, let the neural dynamics be
such that it takes 10 ms per retrieval step to iterate through the place cell
and the spatial (or temporal) transition memories. That means that, given
one place cell ¢;, it takes 10 ms time to activate the successive place cell
¢i+1. Then, retrieving the knowledge that a path between p and r exists
takes 10 s time. Clearly, any neural navigation system that should be used
in realistic scenarios must show significantly better performance.

24The optimal acceleration of retrievals is based on and related to binary
search. The reason for a discrete scale-increment is that, to achieve optimality,
binary search requires each successive scale to bisect the entropy that
remains in the search space. Under the assumption of discrete grid fields,
e.g. rectangular or quadratic fields, the ideal scale increment is 2. The
scale increment of 2 is a widely known fact for binary search and finds
application in a myriad of applications and data structures, for instance
quad-trees, oct-trees, or other search trees that are particularly relevant in
high-performance computing or computer graphics.
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Figure 9: Different interpretations of grid cells in the TSS
model. (upper left) Vector interpretation, in which each scale pro-
vides a longer vector to accelerate retrievals, indicated by different
colours (black: scale 1, blue: scale 2, red: scale 3). Note that this
interpretation can be subtly misleading, because transition bundles
in the TSS model are not defined on singular points or by magni-
tude and direction, as in other vector-based navigation models [6].
(upper right) In the set interpretation, spatial transitions on larger
scales are mappings between systematically increasing sets. This
interpretation emphasizes that place cells lack the knowledge of
their spatial (or temporal) relations, which are provided by grid
(temporal transition) cells. (bottom) The chart/atlas interpretation
combines the vector and set interpretations. Each chart represents
spatial transitions from all place cells in the on-center to all the
place cells in the off-surround. Scales are systematically increasing
charts, meaning the center/surround regions correspond to increas-
ing chunks of space. This interpretation has a natural connection
to differential geometry: each chart provides a local connectivity

each scale: larger areas

metric, and multiple charts stitched together form an atlas. Note
that, in the T'SS model, the local metric is learned on the basis of
spatially modulated sensory afferents, and the spatial neighborhood
relation conveyed downstream to place cells.

The speed-up is exponential with every additional scale®®,
and for biologically plausible receptive field dynamics that
follow a Gaussian distribution, the optimal scale increment
between modules is V2. The reason for this particular scale
increment is that, for optimally accelerating the search, grid
cells on every additional scale need to double the area they
account for. In turn, this translates to a scale increment of
V2 for Gaussian distributions®®. It follows that both the grid
field spacing as well as grid field sizes follow a systematic

25 Additional information about the structure, relation between, and
distribution of places in an environment could lead to further improvements.
For instance, so-called kd-trees in computer science use postprocessing steps
to partition the data space into segments that depend on the number of
points per segment. In the absence of such knowledge and expensive
postprocessing, both for which currently no evidence exists in the rodent
brain, exponential acceleration as described in the main text is optimal.

26 Technically, consecutive steps during binary search ideally bisect the
remaining entropy in the search space, and thus the area under consid-
eration from one scale to the next needs to follow accordingly. Another
mathematical interpretation, in particular for a bottom-up construction, is
that each following scale needs to integrate the representations of two grid
cells from the previous scale. This integration leads to a convolution of two
Gaussian distributions, which has a V2 scale increment in the n-dimensional
case.

increase from one scale to the next. Intuitively, a grid cell
on the smallest grid scale learns spatial transitions between
the smallest distinguishable areas?’, meaning it associates
with place cells that coincide with the domain of a transition
(on-center) and projects reciprocally downstream to those
place cells that coincide with the image (off-surround) of
a transition. Grid cells on larger scales learn transitions
between larger areas, meaning they associate and project to
all place cells which coincide with the increased domain and
image of the spatial transition on this scale, respectively?®.

For illustrative purposes, consider one dimensional grid
cells with discrete receptive fields that learn transitions to
the right on a linear track, as depicted in Figure 8. In this
case, grid cells on the second scale learn transitions that
start in an area that contains two distinguishable locations,
and lead into a region that also covers two locations. In
other words, higher scales of grid cells integrate sensory
information for larger regions and, thus, provide an abstrac-
tion of spatial information to downstream place cells in form
of a successive coarsening (or approximation) of spatial
relationships. In turn, the approximation can be used to
quickly search through the search space. That means that a
retrieval process can exploit the approximation that is given
by higher scales to quickly find approximate trajectories, and
potentially even shortcuts (see the simulated water-maze ex-
periments in [100]). Note, however, that grid fields in the
TSS model are in principle independent of the distribution
of place cells. That means that they are not formed due to
place field afferents, but recruited on spatially modulated
inputs such as border cells. Hence, the perfect alignment of
grid fields and place cells in Figures 8 and 10 is only due to
illustrative simplifications. Rather, grid cells associate with
all place cells that coincide with the activity of the grid cell,
and thus perform a pooling of all coincident place cells. Some
further interpretations of the TSS model are illustrated in
Figure 9.

To summarize, the collection of multiple grid scales in
the TSS model forms a scale-space of transitions?. The scales
follow from acceleration of retrievals, and multiple grid fields
per cell are due to bundling multiple transitions. Thus, both
the hexagonal distribution of fields and the scale-increment

27The smallest scale of grid cells most likely depends on a combination
of the presynaptic resolution that is intrinsic to the sensory modalities,
and behavioural requirements. Essentially, grid cells need to perform
a decoding of the input that they receive to disambiguate and identify
locations, but the resolution of the identification should also not exceed
behavioural necessities. For instance, it might suffice to identify areas that
are approximately the size of 1 or /9 rodents on the smallest scale, because
this could be considered the direct interaction distance of a rodent. An
excess resolution could lead to an increase in energy requirements, for
instance due to the maintenance of a grid cell population that is larger than
behaviourally necessary.

It is important to realize that in the TSS model, grid cells do not
operate on singular values but on entire intervals (or areas) of space. This
is particularly the case for grid cells on higher grid scales.

29Scale-spaces and scale-space theory are widely known concepts in
computer vision and models of visual cortex [55], and had a substantial
influence during the development of the T'SS model.
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On-line learning the Transition Scale Space (simplified 1D discrete)
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Figure 10: On-line learning different grid scales. Learning
large scale grid fields can be achieved using cascaded retrievals
from finer grid scales. For instance, given a place cell pg, a grid cell
on the smallest scale activates the next place cell p;. Cascading
multiple grid cells on this scale retrieves entire sequences of place
cells in spatio-temporal order, for instance py,...,ps3. A grid cell
on a higher scale can exploit small-scale cascades to bind py and
p1 with an on-center field, and convey the relational/transitional
information to p9 and p3.

are intrinsic properties of grid cells in the T'SS model. This
provides a disentanglement of representations of events and lo-
cations (place cells), and the data structures that are required
to represent spatial transitions and to accelerate retrievals
(grid cells). However, this disentanglement presents a chal-
lenge for learning the acceleration data structure, which will

be addressed next.

3.5 The temporal dynamics of on-line learning a Tran-
sition Scale-Space

In the TSS model, grid cells learn spatial transitions on
sensory stimuli, and convey this relational information down-
stream to place cells. Thereby, they solve a binding problem
between spatially related place cells. To solve this binding
problem for successive scales, grid cells on higher scales
need to know which place cells coincide with their spatially
modulated receptive grid fields. However, assume that place
cells exhibit place fields that are smaller than the grid fields
of large grid scales. How can a grid cell on a larger scale
learn to associate with the appropriate place cells?

The challenge is to determine the temporal coincidence
of place cell activity, and the activity of a grid cell with fields
that are larger than place fields. It can be solved by using
sufficiently tuned temporal dynamics on each scale of grid
cells in combination with exploitation of the smallest grid
scale. Consider a one-dimensional grid cell of a large scale
with discrete firing fields (see Figure 8). The grid cell’s pur-
pose is to establish the knowledge that, on this scale, there
is a transition from a region in which py,...,ps are active,
to a region in which py,...,p7 are active. The problem is
that py and p; might be far apart from the animal’s current
location, which means that neither will activate in a timely
manner due to lack of sensory stimulation. In turn, this
would prevent appropriate synaptic facilitation between the
grid and place cells to bind them and establish the transi-
tional knowledge. However, this problem can be solved by
exploiting smaller grid scales and temporal transitions, as

illustrated in Figure 10. Specifically, it is possible to retrieve
one place cell after another using the smallest grid scale. In
other words, recursively looping through smaller scales of
the spatial transition system activates all place cells in the
spatio-temporal order they are distributed in real space. The
activation of remote place cells that coincide only with larger
off-surround grid fields, which indicates the image of the tran-
sition, is thus driven by local dynamics that are due to the
transition system itself, and is independent from sensory
stimuli.

Ideally, the iterative retrieval process to learn grid cells
on larger scales happens relative to the arrival of sensory
stimuli. That means that the iterative retrieval of past and
future place cells should be nested within the time-frame that
is given by the frequency of sensory data®’. Interestingly,
this allows an interpretation of what is observed during
re- and preplay of place cell sequences, and in particular
during Theta Phase Precession (TPP) [44]. During TPP,
place cells of a navigating animal activate during increasingly
earlier phases relative to Theta, and along a linear track
relative to the animal’s heading direction. The place cell
which corresponds most closely to the current location is
active in the trough of Theta, whereas past (future) place
cells are active in order on the downward (upward) slope
of the oscillation. This behaviour is precisely the temporal
dynamics described above for on-line learning in the T'SS
model.

Several further predictions follow immediately from the
description of online learning of multiple scales in the TSS
model. In particular, the temporal dynamics and, transitively,
electrophysiological properties are expected to change along
the scale of grid cells. Because the time integration windows
for grid cells on larger scales must fit to a systematically
growing number of place cells that is relative to the spatial
increase of the grid fields, the time windows for integration
must increase accordingly. In other words, the temporal
window should increase in unison with the spatial scale in-
crement. For biologically plausible temporal tuning curves,
in particular Difference of Gaussians with shifted centers,
the scale increment in the temporal domain is again a factor
of V2 [100]°L. It is also possible to approximately predict
the number of grid scales that can be expected in real ani-
mals based on the temporal dynamics for learning multiple
scales [101]. Specifically, it is the number of retrievals of small
grid scales that can be nested into one Theta cycle. Under
conservative assumptions regarding activation times through
the Entorhinal-Hippocampal loop, this number should be
in the range of 7 + 2. The same number can be established

30Computer scientists and roboticists that develop software for embedded
systems know this issue quite well. Sensors usually operate at a certain fre-
quency, that is often slower than the frequency of the main processor. Every
operation that uses sensory information, such as filtering or postprocessing,
must fit into the time-window that is given by the frequency of the sensors.

31The joint spatio-temporal integration kernels of grid cells of the TSS
model have a peculiar similarity to Gabor filters. Gabor filters are a certain
type of localized linear filters and widely used in classical models of the
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by considering the potential speed-up during retrieval times
that each scale provides in awake animals. Specifically, the
speed-up becomes negligible relative to the temporal dynam-
ics of real neurons for larger numbers of scales and under
normal network operations. As a consequence, this might
explain why learning and consolidation of spatial memories
is supported by sharp-waves and ripples [43], a temporal
effect during which neurons fire at a significantly higher rate
than under normal conditions. In addition, note that Theta
is not required in the T'SS model. Retrievals from smaller
scales of grid cells is only necessary to establish grid cells on
larger scales. Consequently, grid cells on the smallest scale
of the TSS model are, in principle, independent of Theta.
However, the temporal dynamics that are required for learn-
ing multiple grid scales in the T'SS model might lead to an
explanation of Theta itself. To understand this, consider
predicting any future locations that are outbound from the
current location using the smallest scale of the TSS model.
Without any directional information, this corresponds to a
traveling wave of activity, which leads to a steady increase
in the number of neurons that activate over time. Even with
directional information that narrows down the search direc-
tion, maybe provided by head direction cells, it is unlikely
that only place cells activate that are on an ideal linear path
into the given direction. Stochastic noise, uncertainty in
presynaptic information such as the intended heading di-
rection, and other effects that lead to a variability in spike
times make it more likely that the search is characterized
by a traveling cone. Again, this leads to a steady increase
of neurons that activate and, thus, synapses, which should
be reflected in the Local Field Potential. The traveling wave
and traveling cone are illustrated in Figure 11. Finally, the
activation of grid cells along the dorso-ventral axis should
reflect the slower temporal dynamics of grid cells on larger
scales, and therefore express some form of traveling wave of
activity along this axis.

To summarize, the TSS model exploits temporal dynamics
to solve the binding problem of place cells and grid cells
with large grid fields. The temporal dynamics manifest in
retrievals and predictions that are based on smaller grid
scales, and are thus an inherent, algorithmic mechanism of
the TSS model. Effectively, this leads to the activation of
place cells that are along the current trajectory in their spatio-
temporal order. Moreover, these temporal dynamics have a
striking resemblance of Theta and Theta phase precession.

4 A Roadmap for Future Work

The TSS model is an abstract computational model for grid
cells. Some testable predictions that derive from the model
were outlined already above, and several more can be found
in the original work, in particular regarding predictions for
local micro-circuits and heterosynaptic connectivity [98, 100].
The following is a collection of open research questions that
follow from the model and its predictions. They form a
possible roadmap for future experimental and theoretical
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Figure 11: Travelling wave and cone. (left) Without directional
information, activity in the transition system propagates in form of
a wave outbound from the starting place cell (black circle at time
step #p). (right) With additional directional information, outbound
activity corresponds more likely to a cone due to uncertainty in
presynaptic inputs and spike time variability.

work.

* How fast can the Hippocampus stably context-switch be-
tween sequences? Due to the abstract nature of the TSS
model, it can be extended easily with additional informa-
tion regarding context or rewards and switch immediately
between such. However, it is currently not well established
how this might happen in the Hippocampus. Insights will
have significant impact in our understanding of reward
processing, lead to improved and novel models, and poten-
tially yield further theoretical work on switching sequences
in and with dynamical systems. An integral part of this
research will be to determine the theoretical stability of
systems which can context-switch between different se-
quences. That means that it will be particularly relevant
to determine if such systems accidentally switch to other,
related sequences, or if and to which extent one sequence
remains stable over multiple cycles of the computation.
Further advances in this regard might also have direct
impact in artificial systems and robotics, in particular for
implementations that use spiking neural networks and
exploit the benefits of neuromorphic hardware.

* Can the Hippocampus represent multiple sequences at the
same time? Related to the question regarding context, it
is currently unclear if there are multiple sequences repre-
sented simultaneously in the Hippocampus. However, this
could be important in multi-goal tasks, but also for naviga-
tional purposes to represent spatial sequences to several
remote landmarks, from which ego- and allocentric loca-
tion can be inferred more accurately than from only one
landmark. One variant to represent multiple sequences
would be to quickly context-switch between a certain num-
ber of sequences, one after the other. Another would be to
interleave them in time with a certain but systematic time
difference relative to each other. A third variant would
be to use distinct sub-populations to represent individual
sequences to achieve superposition of sequences within
the entire network. An implementation of the TSS model
using spiking neurons could be an ideal testbed for each
hypothesis.

* What is the impact of other hippocampal structures on
sequence processing? The TSS model is, so far, only
concerned with spatial and temporal events (place cells)
and their relations (temporal and spatial transitions).
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To increase its utility, reciprocal connectivity with extra-
hippocampal and cortical associative areas seems expedi-
ent. However, simply reading out the information within
the processing loop of the TSS model appears unlikely,
given that sequences within the loop might be long and
therefore conflict with fast neural temporal dynamics both
locally and in receiving areas. That means that the tempo-
ral dynamics of real neurons likely require that hippocam-
pal sequences are chunked and compressed to make them
transferrable to associative areas. One particularly inter-
esting candidate to study this is Subiculum, which projects
to a variety of areas and exhibits a salient topographical
organization [59]. Computational models of other hip-
pocampal structures, such as Subiculum, are thus natural
extensions of the TSS model to study sequence chunking
and compression.

What are the computational contributions of place cells
in CAl and CA3? The TSS model contains place cells
and temporal transition cells, both of which express place
field characteristics. Yet, it is unclear if the model neurons
correspond to place cells in CA1 and CA3, or if tempo-
ral transition neurons are found in another hippocampal
region. To clarify this question, it is imperative to seek
further understanding of the computational purpose of neu-
rons in CAl and CA3 during sequence processing. That
means that while evidence clearly suggests that place cells
in CAl and CA3 behave differently during familiarization
with novel environments [24], their actual computational
difference remains elusive. A combination of further ro-
dent experiments that induce remapping in place cells and
an improved implementation of the TSS model with accu-
rate temporal dynamics of spiking neurons might provide
relevant insights.

¢ What are the sensory afferents that arrive at grid cells,
and how are they integrated? The TSS model assumes
only a suitable input space. Preliminary simulation results
suggest that border cell or boundary vector cell activity
is sufficient to reproduce hexagonal fields in square envi-
ronments. However, it is unclear if there is any form of
sensor fusion performed already at an earlier stage, if this
happens on the level of individual grid-cells, or the local
micro-circuit in which grid cells are embedded? Answers
to these questions will allow to make accurate predictions
regarding the dense packing of squishy fields and therefore
also regarding the distribution of real grid fields, and yield
further insights into the performed computations.

Are there “grid cells” in Lateral Entorhinal Cortex (LEC)?
The TSS model predicts that any transition system should
exhibit fast recurrent inhibition to minimizes resources,
maximizes storage capacity, and avoid spurious transitions.
A further prediction of the T'SS model is that neurons
which bundle multiple transitions might represent transi-
tions for several distinct inputs, as long as these inputs
are not adjacent. Curiously, LEC shows striking similar-
ity in functional organization and recurrent inhibition to

MEC [68]. Yet, grid cells were not discovered in LEC.
Further study of the afferents arriving at LEC might reveal
some structure or order in the information they represent.
In turn, this might allow to design experiments which grad-
ually sweep through this information space, and thereby
ellicit grid-like responses in LEC. Given LEC’s involve-
ment in odor processing [53], determining the structure
of odor organization, meaning identification of the space
of odors and along which axes the representation varies,

seems a reasonable starting point.

Is phase precession between place and grid cells coordi-
nated, and if yes in which way? The T'SS model currently
uses strong coupling of the temporal dynamics between
place and grid cells to solve the binding problem, but
weak coupling might be sufficient. Real data could pro-
vide insights in particular regarding the formation, size,
and stability of both grid and place fields.

* What is the contribution of precise spike timing in grid

cells? In the TSS model, precise spike timing is relevant
for learning multiple scales, with predictions regarding the
temporal integration time windows of grid cells on larger
scales. To investigate the impact of precise spike timing in
real rodents, the contribution of relative spike times must
be analyzed. However, this will require to go significantly
beyond most contemporary work on grid cells. Usually,
such studies perform correlation analysis on rate maps that
wash out the information that is contained within precise
spike times. It will also require to record simultaneously
from multiple hippocampal areas during a variety of tasks
to properly assess the contribution of relative spike times

within and across areas.

How are grid and place cells interconnected on a synaptic
level, and how are the local micro-circuits in mEC, CA1,
and CA3 functionally organized? The TSS model predicts
that transitioning activity from one place cell to another is
governed by a combination of presynaptic grid and place
cell activity [98]. In fact, grid cells are not considered to be
drivers of place cell activity, and one way to implement this
behaviour is via heterosynaptic connections. Insights into
the synaptic connectivity as well as local micro-circuits
will further advance our knowledge of the specific compu-

tations that are performed.

* What is the behavioural impact of higher grid scales? In

the TSS model, grid cells of higher scales are required
to accelerate retrievals. If higher scales were silenced,
this should be reflected in longer temporal durations that
animals take to initiate movements. Effectively, silencing
larger grid scales means that preplay of future trajectories
will take longer. A challenge during such a silencing study
might be other processes which take over in case planning
takes too long, for instance switching to a visually driven
navigation strategy. Such confounding factors should be
avoided using careful study design.

¢ In which order and shape do connections between cortical
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areas, in particular mEC, CA1l, and CA3, develop and
how strongly are they connected recurrently? This will
shed a light on which connectivity patterns are determined
due to genetic predisposition, and which follow from local
self-organization and tuning. Further information regard-
ing recurrent connectivity will determine to what extent

attractor dynamics can be expected.

How do scales of grid cells self-organize? In the T'SS model,
multiple scales are a means to accelerate retrievals, but
the model does not explain how they originate. Insights
into the development and growth of the neural circuits
within the Hippocampus will likely shed a light on this
process, and lead to new models for the self-organization

of grid scales.

What are the differences between converging and predict-
ing phases during TPP? Where and how do they originate,
and is there a difference in functional contribution? In
particular, it appears important to determine if there is a
fundamental difference between the dynamics of learning
and retrieval of sequences, and if this is related to the

converging and predicting phases of TPP.

How many grid cells really exist in the MEC on each scale?
The TSS model predicts that the number of grid cells that
are required on each scale should decline following an
exponential law. This follows from the systematic increase
of grid field sizes from one scale to the next, and the
exponential speed-up during retrievals per scale. Using
conservative numbers of synapses per neuron, the model
predicts a number of grid cells on the finest (or smallest)
scale that is in the low hundreds, and only tens of neurons
on the coarsest scale [101]. This prediction is in line with
already available data [91], but further evaluations are
required.

What are the functional contributions of multi-field repre-
sentations in place cells? Given recent evidence [39, 29], it
seems natural to investigate their purpose and incorporate
multiple place fields into models.

How to prevent saturation of the TSS model? In its current
form, the TSS model only accumulates information over
time. However, a biological system is expected to prune
irrelevant information to avoid saturation and to free up
resources. It is currently unclear what an optimal pruning
strategy would look like, for instance which vertices or
edges of the tripartite graph of the TSS model should
be removed. Further insight might allow to make predic-
tions regarding forgetting and spatial recency effects in
observations from rodents.

Is there a concise mathematical formulation for (neural)
transition systems? The T'SS model was derived using
propositional logic and first-order principles. Several parts
of the model have salient connections to other theories
from mathematics, for instance grid cells can be inter-
preted as functors from category theory [100], but also
as differential operators. In particular, grid cells of the

TSS model operate on two spaces with different zypes at
the same time, similar to functors, but relay transitional
information, meaning a change in the space, similar to
differential operators. It remains for future work to investi-
gate if there is a consise mathematical framework, maybe
based on #ype theory, that captures these similarities.

5 Summary

This paper reviewed the TSS model for grid cells. The
model suggests distinct functionalities for place and grid
cells in the Entorhinal-Hippocampal loop. While place cells
are proposed to perform localization both in space and
time, grid cells learn spatial transitions, meaning the spatial
structure and relation between places. The model explains
hexagonally distributed grid fields as a result of optimally
representing spatial transitions, and a discrete scale incre-
ment of grid fields with a factor of V2 as a consequence of
optimally accelerating retrievals of sequences. Moreover,
learning the eponymous scale-space of transitions in an online
fashion induces temporal dynamics that match Theta phase
precession.

The article provided an intuitive and accessible introduc-
tion to the TSS model, and contrasted it with other existing
models from the literature. Several testable predictions where
derived from the T'SS model, and open research questions
listed which provide a roadmap for future experimental and

theoretical research.
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