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Abstract

Many computer vision results are based on the max-flow
min-cut theorem. It is used to denoise images, solve stereo-
vision problems, or perform image segmentation, for in-
stance. Consequently, its application to dense data is well
understood. In contrast, novel event-based vision sensors
provide a sparse and asynchronous data representation that
is fundamentally different to image frames. So far it was
unclear how to define a suitable graph and its edge weights
for this data in the context of graph cuts. Here we present
a method to construct this graph for the task of denoising
event-based data of a natural scene. The graph and its
edge weights are computed without the necessity for manual
prior selection. We evaluate the approach using a manually
labeled dataset to demonstrate proof-of-principle.

1. Introduction and motivation
Computer vision applications typically employ standard

cameras to acquire input data. These sensors are well un-
derstood and usually generate dense frames that can be post-
processed with suitable hardware, i.e. graphics cards, at a
certain frequency. Furthermore, modern cameras provide
resolutions of up to several megapixels.

Event-based sensors, or silicon retinas, work quite dif-
ferently and mimic the response of receptors on biological
retinas [26, 22, 24, 27]. They are built of independently and
asynchronously operating pixels which detect changes in
luminance and emit events as soon as the perceived change
exceeds or falls below a configurable threshold. Therefore
only significant changes in the observed scene are detected
and transmitted, leading to an almost continuous stream of
sparse data.

These novel sensors display several potential benefits
and advantageous characteristics. They achieve high dy-
namic ranges of up to 120 dB at high speeds of about 15 µs
inter-event intervals per pixel while exhibiting only very
low power consumption. Hence they are highly suitable

for small and embedded systems which are limited in space
or the number and amount of available resources, such as
miniature flying robots.

The sparse data and high speed pose a twofold challenge.
On the one hand they yield tremendous event rates already
for sensors with only low resolutions. For instance, one spe-
cific obtainable event-based sensor is the Dynamic Vision
Sensor (DVS) [22]. It has a resolution of only 128 × 128
pixels but can generate up to several 100k events per sec-
ond. The amount of data therefore requires algorithms with
high throughput or that can ideally be realized in dedicated
parallel hardware [10].

On the other hand it is difficult to apply algorithms that
can be considered classical or fundamental in the computer
vision literature directly to event streams. The sparse data
may infringe algorithmic constraints or make their applica-
tion simply impractical. For instance, tracking algorithms
like SIFT or SURF rely on information extracted from the
surrounding of a detected corner to locate the same corner
in subsequent frames [25, 1]. It is non-trivial to define such
a descriptor for event streams due to the lack of dense lo-
cal information. Consequently it appears necessary to first
understand how to perform basic computations on event
streams, such as noise reduction, line tracking, or corner de-
tection, that many people would argue are solved problems
for frame based data.

In fact, this is what happened recently. For instance,
progress has been reported to estimate time-to-contact [11],
detect and track corners [12], to compute optical flow
[3, 30, 9], or to estimate stereo-information and disparity
[20, 15] from event-based data. Remarkably, some of these
algorithms received strong inspiration from or exposed a
striking similarity to biological neural networks in the visual
cortex. Other applications of event-based sensors include
anomaly detection [33] or simultaneous localization and
mapping on small robotic platforms [35, 34, 32].

One of the aforementioned fundamental algorithms in
computer vision is graph cuts. It is for instance applied to
denoise images, label regions, or even stereo-vision. We
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asked if it is possible to apply graph cuts to event data in the
seemingly simple task of denoising an event stream. Data
produced by silicon retinas unfortunately contains a non-
neglectable amount of noise. Many algorithms would benefit
if they had to process only events that were caused by real
objects, though. In fact, some algorithms use hand-crafted
heuristics to address the issue. Here we derive a method that
reliably extracts almost exclusively events generated by real
stimuli.

First a short introduction to graph cuts is given for readers
unacquainted with the method. Then we will outline the
challenges posed by event data and suggest one way to solve
them. We evaluate our technique using a manually labeled
dataset to demonstrate proof-of-principle. Finally we will
discuss our findings and conclude with remarks about future
work.

2. A short but gentle primer on graph cuts
To make this paper self-contained we will quickly intro-

duce graph cuts and then proceed to necessary definitions.
To promote uniformity, we tried to keep notations as close as
possible to the referenced literature. Readers familiar with
the matter may directly jump to the next section.

Many early vision tasks require labeling of individual pix-
els according to a set of labels. For instance, image segmen-
tation assigns labels to pixels according to which segment
they belong. Introducing a cost to assign the labels reduces
the process to an energy minimization problem. The issue
can be rephrased in form of graph theroetical notation, which
thus allows to apply the max-flow min-cut theorem[28]. De-
spite their comparatively long history – a method to compute
the maximum flow through a network is already known for
many decades [16] – interest in efficient methods to compute
graph cuts continues. Only recently, advances to distribute
the computation were reported [36] and tighter theoretical
bounds discovered [18].

After introduction to the computer vision community
in [17], graph cuts have since seen widespread adoption.
Their application to image data has undergone thorough
and rigorous analysis. For in-depth analyses and overviews
we would like to refer the reader to the work presented in
[7, 5, 8, 4, 21] and especially [6]. The latter includes a
comprehensive study of graph cuts and their application to
computer vision tasks. Especially interactive labeling and
segmentation [31] or extensions to N -dimensional spaces
[23] are of current concern.

The energy minimization problem can be formalized with
the help of the following notations.

Definition 1. A dataset P consists of N enumerable ele-
ments p ∈ P for which a neighborhood N is defined. More
formally, N = {{p, q} : p, q ∈ P, p 6= q}.

For example P represents an input image, p ∈ P is an in-

dividual pixel, and the setN covers all unique pairs of pixels.
It is hence possible to express neighborhood relations with
the help of additional functions, e.g. the Euclidean distance
between two pixels in the image coordinate space. Note that
a relationship function d is not necessarily symmetric, i.e.
d(p, q) = d(q, p) may not hold.

Definition 2. A labeling L of P assigns each p ∈ P one
element of the set of labels L, i.e. it is a vector

L = (l0, . . . , lp, . . . , lN−1)

where lp ∈ L is the label of p.

Obviously there are |L|N different possible labelings.
The goal is to find one labeling which is optimal to certain
criteria.

According to [5], it is possible to find an optimal labeling
L̂ by defining and minimizing the basic energy function

E(L) = λ ·R(L) +B(L) (1)

where λ is a tune-able, application dependent parameter.
R(L) =

∑
p∈P R(lp) is an accumulator for the cost to

assign individual labels using a cost function R(lp) and
B(L) =

∑
{p,q}∈N B(lp, lq) determines the cost to assign

labels to neighboring elements. Usually, B(lp, lq) = 0 for
lp = lq which serves to penalize discontinuities across pixels
and is called boundary term. Nevertheless, B(lp, lq) needs
to preserve discontinuities in general as it would equalize
the whole labeling otherwise [21].

The definitions above, especially the neighborhood re-
lations, lend themselves to description in graph theoretical
terms. Let the elements p ∈ P be vertices in a graph and
their neighborhood relationships edges. After introducing
two additional nodes, called source (s) and sink (t) to which
all other vertices are connected, the minimization can be
expressed using the following definition.

Definition 3. Let a graph G = (V,E) consists of vertices
v ∈ V , edges a ∈ E, and non-negative edge-weights wa ∈
R+. An s-t cut C ⊂ E is a set of edges which separates
G into two disjunct subsets S and T . The cost c(C) =∑
a∈C wa is the sum of all weights of edges on the cut.

According to the max-flow min-cut theorem, it is possible
to minimize Equation 1 by computing the minimum cut Ĉ.
Examples of the construction of a graph and cuts are shown
in Figure 1.

It is straightforward to define cost functions and edge
weights for many applications. For instance, the gray scale
value of images can be used as regional term and the inter-
pixel distance as boundary term. Unfortunately, this is not
the case for event-based data. We will address the reason
and present a possible technique in the following sections.



Figure 1: Construction of a graph from data and cut exam-
ples. A One dimensional input in which consecutive vertices
are considered neighbors. B Original vertices connected to
source (s) and sink (t) terminals. C A trivial cut (dashed
line) completely separating one terminal node. D An optimal
cut in a graph with different edge weights, indicated by line
thickness.

3. A short story on naive graph cuts on event
data

The sensors under consideration yield streams of events
that are induced by changes of luminance. In natural scenes
these changes are mostly due to motion. Formally, an
event e is a tuple e = (t, p,x) with time-stamp t, polarity
p ∈ {−1, 1}, and location x ∈ NX×Y0 where X and Y cor-
respond to the sensor resolution. The polarity informs about
decrease or increase in luminance, respectively. Visualiza-
tions of event data are usually confined to 2D representations,
where events of a certain time window are accumulated and
rendered as frames such as in Figure 2A. However, this repre-
sentation disguises the fact that events are actually elements
of a very sparse voxel-space, such as depicted in Figure
2B. Nevertheless some algorithms for event data internally
operate on some form of accumulation frames, e.g. [29, 13].

It may be tempting to apply graph cuts to accumulated
events of a certain time window and treating the accumu-
lated events as image. Here, gray-scale values are typically
computed as temporal difference between the last occurrence
of an event on the respective pixel and the time the image
is produced, where bright pixels indicate a small difference.
The issue is thus reduced to compute a graph cut on a gray
scale image. Given the typically small resolution of event
sensors this can be computed quickly. However, there are
significant drawbacks in this approach.

Either the accumulated frame is computed only a few
times, e.g. after a fixed delta-t, or the cut needs to be eval-
uated for each event. The first method partially neglects
the temporal information and high temporal resolution of
event-based sensors, one of their main advantages compared

to other sensors. The latter technique leads to significant
performance issues, as both the accumulation frame needs to
be updated and the graph cut computed for each event. This
seems to be ill-advised, given event rates of up to several
100k events per second in many scenes.

The major issue with this naive approach is the flawed
interpretation of temporal information, though. Assume two
independent stimuli that are moving at two different speeds,
one very fast and one very slow. Furthermore, consider that
accumulation frames are read out at a steady frequency. As
mentioned before, the gray scale values of their pixels are de-
termined as temporal differences. It can be expected that the
fast moving stimulus generated events that are recent enough
with respect to the read-out time of the image to produce a
high gray scale value. However, this is not necessarily the
case for the slowly moving stimulus. The gray-scale value
therefore depends on the relative time between read-out and
event. A quick solution, namely completely ignoring the
temporal difference and simply setting all pixels on which
an event occurred to a high gray scale value won’t solve the
issue either. Due to the small resolution of many event-based
sensors, some stimuli cover only very few pixels. Small
regions however are prone to get cut off as background noise
in graph cuts.

Clearly a solution is required that operates on events only,
treats all events equally but separately, and uses a meaningful
interpretation of the temporal information that is independent
of read-out times.

4. Temporal trace graph cuts for event-based
data

We seek to apply graph cuts to denoise a given stream
s = (e0, . . . , eT ) of events et = (t, p,x) at times 0 ≤
t ≤ T . Furthermore, manual prior selection which is often
necessary in classical computer vision applications should
be avoided. For this, we will need to extract additional
information from the stream itself. Note that we constrain
additional information for an event et to origin only from
events ek prior to et, i.e. k < t. Although the graph and
the cut are computed for the whole stream s in the work
presented here, this constraint will help to develop on-line
versions of the algorithm in future work. To further simplify
the technique, only events of one polarity are considered if
not stated otherwise, namely on-events.

4.1. The trivial homogeneous labeling pitfall

We will now argue why additional information is required
and present its computation in the subsequent section. Al-
though events carry polarity information, this by itself not
necessarily relates directly to real brightness of input stim-
uli. For instance, a pen moving in front of a checkerboard
pattern may produce both on- and off events in a counter-
intuitive manner at every edge transition. Hence without any



Figure 2: Visualization of event-based data and trace compu-
tation. A On- and off- events (white and black, respectively)
accumulated for few milliseconds of a pen falling in front of
a dynamic vision sensor. B A single event (dark blue) is a
voxel in a sparse x− y− t volume of events (light blue) that
happened before. C Feasible traces of previous events (light
blue voxels linked by gray lines) that end at the novel event.
Unsuitable events (gray voxels) are ignored. D The most
likely trace (light blue voxels) predicts the time at which
the novel event is expected (green voxel, circles indicate
certainty).

additional knowledge, events should be considered primarily
to carry only unary information, namely that some change
occurred at their locations. Unfortunately, this leads to the
following vexing situation.

Without loss of generality, consider a one dimensional
sensor which consists of solely one singular pixel that emits
events when luminance changes are detected. Given some
events, a graph can be constructed in the following way
that conforms to Definition 3 which comprises regional and
boundary terms as required in Equation 1. The boundary
term consists of neighborhood relations between individual
events, for instance subsequent events can be considered
immediate neighbors. An example is given in Figure 1A. In
addition, s and t nodes are introduced into the graph and
connected to each event to form the regional term. The final
graph is shown Figure 1B.

If a graph cut is applied to this graph, the result will
always be a homogeneous labeling in which all events will
be labeled either object or noise. Due to lack of sufficient
information, all edges have to be treated equally weighted,
hence the graph cut reduces to minimizing the number of

edges that need to be cut. A homogeneous cut example
is shown in Figure 1C. It is trivial to proof that this always
yields either of the two possible homogeneous labelings. The
proof can easily be extended to two dimensional sensors.

Hence suitable edge weights are required that are signif-
icantly different from each other to allow non-trivial cuts.
One likely candidate is temporal information between events.
However, using time-stamps themselves introduces issues
as soon as multiple stimuli with different velocities are per-
ceived by a sensor, similar to the issue in the naive approach.
Consequently we will now present prerequisites for and the
derivation of a method that yields such a measure.

4.2. Temporal traces and the linearity conjecture

Consider an ideal sensor of resolution X × Y with arbi-
trary small pixels that discretize the XY space and process
which yields unique time-stamps t. In natural scenes, stimu-
lus typically covers multiple pixels at the same time. For now
however, focus on a smallest possible moving stimulus S
triggering only singular events without any aliasing effects.
S can therefore be understood as a particle moving in front
of the sensor, generating events eq, . . . , es, er as soon as it
transits across pixels. By implication we can thus assume
that there exists a predecessor event es with s ≤ t− 1 < t
in the immediate pixel-neighborhood of any et which is due
to the same stimulus. The same argument holds recursively
for es. Hence, et is the most recent entry in an ordered
sequence of events, called trace. Clearly, each trace can
be decomposed into chunks of events which we call trace
segments.

Definition 4. Given an arbitrarily small stimulus S, the
trace Tt of an event et is the ordered tuple of events triggered
by S since stimulus onset time q. More formally, Tt =
(eq, . . . , es, et) for q < · · · < s < t.

Definition 5. Each trace Tt can be decomposed into an
arbitrary number of unique segments τ such that Tt =
(eq, . . . , es, et) = (τ0, . . . , τN ) holds.

Regarding their time-stamps, individual segments are
related by min τr ≤ max τr−1 and max τr−1 < max τr.
Consider the example Tt = (e0, e1, e2, e3). A suitable
decomposition of Tt is (τ0, τ1) with τ0 = (e0, e1) and
τ1 = (e1, e2, e3).

Two consecutive events es and et of a trace are denoted
es → et, where ”→” reads as happens before. With the
assumption of an ideal sensor, we can thus formally identify
the origin of a predecessor event.

Axiom 1. Given two events es → et on a two-dimensional
ideal sensor. The origin of es is one of the coordinates in the
immediate 8-neighborhood of et.

The neighborhood is visualized in Figure 3A. Note that
s = t − 1 may not hold: as soon as multiple stimuli and



Figure 3: Traces, neighborhood, and linearity conjecture. A
Two bar stimuli S0, S1 moving in front of a one dimensional
sensor in opposite directions, generating the traces T0, T1.
Each event gets a unique time-stamp, potentially leading
to interleaving traces. B For a two dimensional sensor, the
location of a preceding event es of an event et is within
the 8-neighborhood. C The high temporal sampling rate of
event-based sensors decomposes a trace T of stimulus S0

into piecewise linear segments τ0, τ1, τ2.

therefore traces exist, event times of different traces could
interleave (Figure 3B). This is due to hardware constraints,
for more details see [22].

Given a stimulus S, its acceleration is coded in the tem-
poral difference between consecutive events of its trace
Tt. Recall that pixels on event-based sensors operate asyn-
chronously. Furthermore it can be expected that the ex-
tremely high temporal sampling rate of individual pixels far
exceeds the rate of change of motion in most natural scenes.
A short segment τr = (. . . , er−1, er, er+1, . . . ) of Tt with
|τr| � |Tt| therefore captures an approximately linear part
of the motion of S. We can thus state the following postulate
which is visualized in Figure 3C.

Conjecture 1. Consider an ideal sensor and a moving stim-
ulus S. The acceleration of S can be recovered from the
corresponding trace Tt by composition of the piecewise lin-
ear segments τr ⊂ Tt.

Conclusively there exists a τt for any event et which is
linear. The temporal differences between all consecutive
events of τt are constant. In other words, τt has a fixed mean
with zero variance.

4.3. Using maximum likelihood traces to compute
edge weights

Let us now return to the problem of finding suitable edge
weights wa for a graph to yield non-homogeneous cuts in the
task of data denoising. Recall that, according to Equation 1
and Definition 3, we need to define weights for the regional
term as well as the boundary term for elements of a dataset
P . Here, P stands for the entirety of events recorded with
an event-based sensor. Hence it is necessary to determine
the likelihood of an event to either belong to an object or to
be noise.

Consider an event et ∈ P that is not triggered at the
stimulus on-set time q, i.e. q < t. Examples of et and P are
shown in Figure 2B. Definition 4 tells that there exists exactly
one trace Tt which leads to et. Due to noisy measurements,
real sensor data of a natural scene is likely to contain many
potential candidate traces T (j)

t , for j ≥ 1, though. The first
step is thus to reduce P to the set of potential traces which,
according to Axiom 1, live in the (recursive) 8-neighborhood.
An example of some traces is depicted in Figure 2C.

Conjecture 1 allows to further narrow down the search
space. Clearly, the number of possible traces T (j)

t grows ex-
ponentially with the length of the longest trace. The linearity
conjecture reduces this to query only the trace segments τ (j)t .
In fact, the results reported below suggest that a segment
length of 5 is already sufficient. Still, this is a problem for
real-time scenarios that we will address in Section 5.

The most likely segment can be computed due to the
linearity conjecture. Let µ(τt) and σ(τt) be functions that
return the mean and variance, respectively, of temporal dif-
ferences between consecutive events er → es of a trace
segment. The most likely segment τ̂t is given by

τ̂t = argmin
τ
(j)
t

σ(τ
(j)
t ) (2)

where τ (j)t are trace segments with |τ (j)t ≥ n > 1.
It turns out that µt := µ(τ̂t) and σt := σ(τ̂t) lead to

a characterization of et. Let µt−1 and σt−1 be the mean
and variance, respectively, of the most likely segment τ̂t−1
without et, i.e. τ̂t = (τ̂t−1, et). The Kullback–Leibler diver-
gence DKL(· ‖ ·), for instance, is one possible measure to
finally reason about an event using

c(et) = DKL(N (µt−1, σt−1) ‖ N (µt, σt)) (3)

whereN (µ, σ) denotes a Gaussian distribution with mean µ
and variance σ. The resulting value indicates how strongly
an event changes the most likely trace segment with respect
to the linearization conjecture. Another interpretation is
that the best matching trace segment τ̂t is used to predict
the occurrence of the next event and quantify how good
the real event matches the prediction. This interpretation is
visualized in Figure 2D.



Note that other measures than the Kullback-Leibler diver-
gence are possible. Therefore we termed c(et) the charac-
teristic value to distinguish it from the function used in its
computation.

Finally we can construct remaining edges and compute
their weights. Recall that two different types of weights
are required. First consider weights for the regional term in
which an event e is connected to the source and sink nodes
s and t, respectively (see Figure 1 for clarification). With a
suitable characteristic value c(e) such as given by Equation
3 this can be defined as

wse = c(e) and wte = 1− c(e) . (4)

The principle is that according to Equation 3 a small charac-
teristic value indicates an event that matches the prediction.
Hence, it is more likely to origin from a stimulus than it
should be considered noise.

Secondly, and lastly, focus on the boundary term. Most
natural scenes will not trigger singular events but whole
waves of events, for instance due to an edge. The linear-
ity conjecture leads to the assumption that events of an
event wave that are triggered by the same stimulus should
have the same or similar characteristic values. Conclusively
we connect each event e to all (existing) events f in its 8-
neighborhood that happened before. The edge weights are
computed according to

wfe =
1√

|dx|2 + |dy|2 + |κ · dc|2
, (5)

where dx and dy are spatial offsets in x and y direction. dc
is the difference in characteristic value. We introduced the
tunable parameter κ ≥ 1 to adapt to sensor characteristics
and to avoid numerical issues when dc becomes too small.

One of the design goals of the algorithm was that the con-
struction of the graph can be performed iteratively. There-
fore, each characteristic value is only allowed to depend on
events that happened before. This constraint will allow to
extend the algorithm to an on-line variant in future work.

5. Experimental results and discussion
In the following section we present experimental results

of our approach. We implemented the gist of our algorithm
in C++ and used Lemon Library 1.3.1 to compute the graph
cut [14]. We discarded trace segments with less than 3
elements and already stopped at a maximum segment length
of 5. Albeit not shown here, our results suggest that longer
segments not necessarily improve the results.

The dataset is a short event stream of a pen falling in
front a white background. A two dimensional accumulation
frame of the pen falling in front of the sensor is shown in
Figure 2A. The sensor was fixed on a static mounting to
avoid events due to shaking and only natural light was used.

Figure 4: Combined classification results for several values
of κ.

The dataset was subsequently manually labeled. Events that
are clearly far away from the majority of other events were
labeled as noise. All other events that visually formed a
coherent structure were marked as object. Note that hereby
some events were marked object which could be considered
to be artifacts of trailing noise. There are no known clear
indicators for trailing noise, though. We will discuss this
form of noise further below. Finally, artificial random noise
was systematically added to the original dataset.

Recall that we are interested in extracting events that are
almost certainly due to a real stimulus. Most algorithms that
we are aware of can handle fewer numbers of events easily.
However they show issues with distractor events. Thus it is
preferable to discard some events that were in fact generated
by an object than to include too many events that are due to
noise.

Results for different levels of noise and settings of κ
are depicted in Figure 4. The classification quality was
computed as follows. Each event reported to be an object was
checked against the ground truth data. The relative number
of correctly identified events with respect to the total number
of events reported to be an object yields the classification
quality. The number of events missed during the process is
displayed as well. The algorithm yields a high classification
quality despite the increase in noise. Quite interestingly,
the number of missed events stays approximately constant
although the number of noise increases steadily.

Our technique successfully selects almost only genuine
object events in the original dataset. Three dimensional ex-
ample representations of the original and noisy inputs and
outputs are shown in Figure 5A and B, respectively. The fig-
ure displays all events as blue circles in a three dimensional
space. Already the original dataset contains perceivable
noise. However, most of the noise is correctly identified.
However, some events that belong to the object were marked
as noise as well.



Figure 5: Result examples. A Application of our technique to the original dataset. B The input data is augmented with artificial
noise, here a proportional amount of 20%.

The algorithm cuts off a layer on the outer shell of events.
This behavior is depicted in the third column of Figure 5A.
Close visual inspection of the data shows that the events that
belong to the object according to ground truth but are marked
as noise seem to fall into two categories. The first class is
visible in the figure as a seemingly thin line of events right
before the remaining depicted events. These are events that
mark the onset of the stimulus, as they are the temporally
first to appear in this area. Either the trace segment was not
long enough at this location, or the temporal information was
not yet coherent. The latter may be due to the characteristics
of the used sensor and the generated events. Quite often
a sensor pixel generates two events that follow each other
quickly instead of a single event that would be expected.

The second class of events detected to be noise but be-
longing to the object may be due to trailing noise. It is
visible in Figure 5A as well and forms a coherent area of
events right after the previously mentioned line of events.
The analog circuits of some of the sensors express a form
of ringing noise after a stimulus left a sensor area. It is not
yet clear what exactly causes this trailing noise. In some
recordings this form of noise is clearly visible for a human
observer (data not shown), in others it is difficult to identify
if an event is genuine or not.

The characteristic value yields informative knowledge
about an event. In fact, it seems as if the value itself may be
enlightening enough to discard an event. Early experiments
with this idea required manually tuning the classifier to reach
comparable results, though. An approach we deem question-
able, definitely not satisfactory, as a fully automated process
would find wider application. Hence we left an evaluation
using only the characteristic value for future work.

In addition, future work will require to evaluate the ap-
proach on more datasets. This is necessary to confirm that
the principle works on datasets from sensors with higher
resolutions and other internal characteristics. Only recently
a novel set of ground truth datasets was released [19] and is
likely to be used in future evaluations.

6. Conclusion & future work

In this paper we demonstrated a method to construct
graphs for event-based data that can be used in graph cut
applications. First we showed why it is necessary to extract
additional information from a stream of events. Then we
argued why a naive approach to extract such information is
based on a potentially flawed interpretation of the temporal
data stored in the stream. Using a linearity conjecture, we
then derived a way to compute a characteristic value for each



event using Kullback–Leibler divergence. This characteristic
value in turn can be used to set up weights required in the
graph. We successfully applied our technique on a small
manually labeled dataset and show very good classification
rates even for a huge number of noise events.

Our results suggest that the computation of a character-
istic value for events is indeed a suitable approach to auto-
matically compute edge weights for graph cuts. However,
the computation of these weights have a significant impact
on the runtime of the algorithm. Currently, exponentially
many traces are evaluated. Given the linearity conjecture on
which we based the characteristic value, it is arguable if all
theoretically possible traces need evaluation or if the traces
can be pruned to a very small subset. For instance, it may be
sufficient to examine only traces that lead to the event on a
rectilinear path. In fact, early experiments suggest that this
is indeed the case. Another approach is to generally limit
the temporal depth. In other words, discarding events that
are older than a certain time could reduce the accrued traces.
Moreover, it would then be possible to define dedicated fil-
ters that can be evaluated in parallel for the whole temporal
domain in which the remaining events live. Interestingly this
moves our technique close towards Gabor filter banks, an
approach that was successfully employed to compute optic
flow from event data just recently [9]. Hence the results
provoke plenty of further research and development. The
computation of the characteristic values is embarrassingly
parallel, as each trace segment can be evaluated indepen-
dently of each other. Therefore pure hardware realizations or
improved software implementations that prune the necessary
computations are imaginable. A real-time application would
be the targeted result of such an attempt.

Further theoretical investigations are likely as well. At
the moment, the characteristic value is computed for each
event only by examining its own trace. However real-world
stimuli usually cover more than just one pixel, hence evoking
multiple related traces. We think that changing the way the
characteristic value is computed to collect immediate lateral
information from neighboring events as well as additional
feedback from a larger pool of events will improve our algo-
rithm. The idea for a multi-resolution analysis is based on
the lateral connectivity and pooling principles found in the
processing of the visual cortex and was already applied to
the related task of computing optic flow, however for regular
images [2].

Finally, trace segments are not simply a by-product but
can be used for other purposes. Inherent in all traces is the
temporal information and direction of the stimulus. Hence,
it is possible to not only predict where a stimulus is moving.
Grouping events by trace similarity and performing segmen-
tation without further graph cuts are just two possible areas
of interest.
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c++ graph template library. Electron. Notes Theor. Comput.
Sci., 264(5):23–45, July 2011. 6

[15] M. Firouzi and J. Conradt. Asynchronous event-based coop-
erative stereo matching using neuromorphic silicon retinas.
Neural Processing Letters, 43(2):311–326, 2016. 1

[16] D. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton
University Press, Princeton, NJ, USA, 1962. 2

[17] D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact max-
imum a posteriori estimation for binary images. Journal



of the Royal Statistical Society. Series B (Methodological),
51(2):271–279, 1989. 2

[18] D. G. Harris and A. Srinivasan. Improved bounds and algo-
rithms for graph cuts and network reliability, 2016. 2

[19] Y. Hu, H. Liu, M. Pfeiffer, and T. Delbruck. Dvs benchmark
datasets for object tracking, action recognition, and object
recognition. Frontiers in Neuroscience, 10:405, 2016. 7

[20] J. Kogler, M. Humenberger, and C. Sulzbachner. Event-Based
Stereo Matching Approaches for Frameless Address Event
Stereo Data, pages 674–685. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011. 1

[21] V. Kolmogorov and R. Zabih. What energy functions can be
minimized via graph cuts? IEEE Trans. Pattern Anal. Mach.
Intell., 26(2):147–159, 2004. 2

[22] P. Lichtsteiner, C. Posch, and T. Delbruck. A 128 times; 128
120 db 15 μs latency asynchronous temporal contrast vision
sensor. Solid-State Circuits, IEEE Journal of, 43(2):566–576,
Feb 2008. 1, 5

[23] C. Liu, F. Li, Y. Zhang, and H. Gu. Interactive image seg-
mentation based on hierarchical graph-cut optimization with
generic shape prior. In ICIAR 2009, volume 5627 LNCS,
pages 201–210, Halifax, NS, Canada, 2009. Springer Verlag.
2

[24] S.-C. Liu and T. Delbruck. Neuromorphic sensory systems.
Current Opinion in Neurobiology, 20(3):288 – 295, 2010.
Sensory systems. 1

[25] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. Int. J. Comput. Vision, 60(2):91–110, Nov. 2004.
1

[26] C. A. Mead and M. Mahowald. A silicon model of early
visual processing. Neural Networks, 1(1):91 – 97, 1988. 1

[27] C. Posch, D. Matolin, and R. Wohlgenannt. High-dr frame-
free pwm imaging with asynchronous aer intensity encoding
and focal-plane temporal redundancy suppression. In Pro-
ceedings of 2010 IEEE International Symposium on Circuits
and Systems, pages 2430–2433, May 2010. 1

[28] A. Schrijver. On the history of the transportation and maxi-
mum flow problems. Mathematical Programming, 91(3):437–
445, 2002. 2

[29] C. Sulzbachner, C. Zinner, and J. Kogler. An optimized silicon
retina stereo matching algorithm using time-space correlation.
In CVPR 2011 WORKSHOPS, pages 1–7, June 2011. 3

[30] S. Tschechne, R. Sailer, and H. Neumann. Bio-Inspired Optic
Flow from Event-Based Neuromorphic Sensor Input, pages
171–182. Springer International Publishing, Cham, 2014. 1

[31] V. Vezhnevets and V. Konouchine. “Grow-Cut” - interactive
Multi-Label N-D image segmentation. In Graphicon, pages
150–156, 2005. 2

[32] N. Waniek, J. Biedermann, and J. Conradt. Cooperative
slam on small mobile robots. In 2015 IEEE International
Conference on Robotics and Biomimetics (ROBIO), pages
1810–1815, Dec 2015. 1

[33] N. Waniek, S. Bremer, and J. Conradt. Real-time anomaly
detection with a growing neural gas. In S. Wermter, C. We-
ber, W. Duch, T. Honkela, P. Koprinkova-Hristova, S. Magg,
G. Palm, and A. Villa, editors, Artificial Neural Networks and
Machine Learning – ICANN 2014, volume 8681 of Lecture
Notes in Computer Science, pages 97–104. Springer Interna-
tional Publishing, 2014. 1

[34] D. Weikersdorfer, D. Adrian, D. Cremers, and J. Conradt.
Event-based 3d slam with a depth-augmented dynamic vision
sensor. In Robotics and Automation (ICRA), 2014 IEEE
International Conference on, pages 359–364, May 2014. 1

[35] D. Weikersdorfer, R. Hoffmann, and J. Conradt. Simultaneous
localization and mapping for event-based vision systems. In
Computer Vision Systems, pages 133–142. Springer Berlin
Heidelberg, 2013. 1

[36] M. Yu, S. Shen, and Z. Hu. Dynamic parallel and distributed
graph cuts. 2015. 2


